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In this article, we introduce a novel reconstruction and modeling pipeline
to create polygonal models from unstructured point clouds. We propose an
automatic polygonal reconstruction that can then be interactively refined by
the user. An initial model is automatically created by extracting a set of
RANSAC-based locally fitted planar primitives along with their boundary
polygons, and then searching for local adjacency relations among parts
of the polygons. The extracted set of adjacency relations is enforced to
snap polygon elements together, while simultaneously fitting to the input
point cloud and ensuring the planarity of the polygons. This optimization-
based snapping algorithm may also be interleaved with user interaction. This
allows the user to sketch modifications with coarse and loose 2D strokes,
as the exact alignment of the polygons is automatically performed by the
snapping. The generated models are coarse, offer simple editing possibilities
by design, and are suitable for interactive 3D applications like games, virtual
environments, etc. The main innovation in our approach lies in the tight
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in an algorithm that robustly discovers the set of adjacency relations.
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Arikan, M., Schwärzler, M., Flöry, S., Wimmer, M., and Maierhofer, S.
2013. O-Snap: Optimization-based snapping for modeling architecture.
ACM Trans. Graph. 32, 1, Article 6 (January 2013), 15 pages.
DOI = 10.1145/2421636.2421642
http://doi.acm.org/10.1145/2421636.2421642

1. INTRODUCTION

Modeling and reconstruction of buildings poses a challenge for both
current research efforts as well as industrial applications. While data
acquisition processes and techniques have experienced enormous
advances over the last years, the ensuing processing and modeling
steps are by far not as sophisticated and unproblematic to handle.
Reasons for this are on the one hand the large size and noisiness
of the point cloud data gathered from laser scans, photogrammetric
approaches, or stereo cameras, and on the other hand the absence
of suitable modeling tools and techniques that can handle the com-
plexity of large 3D point clouds.

Converting raw input data into 3D models suitable for applica-
tions like games, GIS systems, simulations, and virtual environ-
ments therefore remains a complex and time-consuming task suit-
able for skilled 3D artists only. Modeling applications like Google
SketchUp and its Pointools [2011] plugin address this issue by
proposing simplified user interfaces and interoperability with other
products like Street View (from where the artist can for example
retrieve photogrammetric data). However, the modeling process re-
mains cumbersome and time consuming, as the accuracy of the
reconstruction depends on the skills and patience of the user. In
contrast, our system automatically maintains the fitting to the input
point cloud during the whole reconstruction and modeling process.
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Fully automatic reconstruction approaches may omit any user inter-
action, but can hardly deliver satisfying results in case of erroneous
and/or partly missing data. We overcome these limitations by letting
a user guide the geometry completion. Although our system is in-
teractive, we strongly benefit from tight coupling of user interaction
and automatic reconstruction techniques.

In this article, we present a new approach to modeling 3D build-
ings from measured point cloud data. Our approach is mainly based
on the observation that many man-made objects, and especially
buildings, can be approximated and modeled using planar surfaces
with piecewise linear outlines as their primary elements, as long as
the desired level of detail is not too high. There are two main insights
that drove this research: (1) in order to create 3D models suitable
for virtual environments, the system needs to propose an initial
solution that already abstracts from the deficiencies of the input
data, like noise, missing elements, etc. And (2), modeling requires
a tight coupling of interactive input and automatic optimization.
We therefore propose a modeling pipeline that first creates a coarse
polygonal model from an input point cloud, based on the decom-
position of the points into subsets associated with fitted planes and
subsequent polygon boundary extraction. The most important step
is an optimization-based algorithm that snaps adjacent parts of the
model together. This algorithm is then repeatedly carried out dur-
ing the interactive modeling phase to facilitate modeling. Our work
exploits certain characteristics in the input data to provide an op-
timized reconstruction of piecewise planar surfaces with arbitrary
topologies, which is precise on the one hand, and comprises a very
low number of faces on the other hand.

Our main contributions are:

—a new polygonalization pipeline for point clouds that abstracts
polygon outlines to reasonable shapes even in the presence of
high amounts of noise and outliers, that is easy to implement,
and most importantly maintains interactivity during the modeling
process;

—a new optimization-based snapping algorithm for polygon soups,
where the novelty lies in a robust discovery of adjacency rela-
tionships;

—a new interactive modeling paradigm based on 2D sketching
combined with interactive optimization-based snapping, allowing
the user to model with coarse strokes.

2. RELATED WORK

The challenge of quickly generating 3D models of architectural
buildings from images, videos, or sparse point clouds has received
tremendous interest lately. Although significant success has been
achieved with both semi- and fully automatic systems such as from
Werner and Zisserman [2002], Schindler and Bauer [2003], Chen
and Chen [2008], Furukawa et al. [2009], and Vanegas et al. [2010],
as well as interactive systems such as from Debevec et al. [1996], van
den Hengel et al. [2007], Sinha et al. [2008], and Nan et al. [2010],
these systems either require a greater amount of manual intervention
or have strict assumptions on the model to be reconstructed. We
refer the reader to the recent survey by Musialski et al. [2012] for a
comprehensive overview of urban reconstruction algorithms.

The automatic reconstruction work of Chen and Chen [2008]
introduces a method to reconstruct polygonal faces of the model
by searching for Hamiltonian circuits in graphs. They assume
the existence of the complete set of planes and their neighboring
information. Two planes are assumed to be adjacent if the
minimum distance between their corresponding point sets is within
a distance parameter. Due to erroneous and missing data prevalent

in real-world datasets, we believe that one of the most challenging
problems in automatic reconstruction remains the determination
of neighboring information and that more sophisticated algorithms
are needed to solve this problem.

Image-based approaches [Werner and Zisserman 2002; Schindler
and Bauer 2003] generate coarse approximations consisting of mu-
tually orthogonal planes. The coarse models are then refined with
predefined shapes to add details such as windows, doors, and wedge
blocks.

In their seminal work, Debevec et al. [1996] introduced a hybrid
method that combines geometry-based modeling with image-based
modeling into one pipeline, in which the user matches edges in
the photographs to the edges in the model. Parameters and relative
positions of model components as well as camera parameters are
computed by minimizing a nonlinear photogrammetric objective
function.

Recently, Nan et al. [2010] presented a system, the so-called
SmartBoxes, to quickly model architectural buildings directly over
3D point clouds. SmartBoxes assumes Manhattan world scenes
[Furukawa et al. 2009; Vanegas et al. 2010], and is great to recon-
struct facades with repetitive axis-aligned structures. Compared
to SmartBoxes, our system doesn’t make any assumptions on the
shape of planar surfaces, their mutual alignments, and orientations.

Sinha et al. [2008] introduce an interactive system to generate tex-
tured models of architectural buildings from a set of unordered pho-
tographs. The user sketches outlines of planar surfaces of the scene
by directly drawing on top of photographs. The drawing process
is made easier by snapping edges automatically to vanishing point
directions and to previously sketched edges. Compared to our ap-
proach, their system still needs a precise drawing of polygons, since
they do not automatically estimate polygon boundaries, and snap-
ping is induced by a simple proximity criteria, while our system reli-
ably extracts adjacency relations between elements of the polygons.

The VideoTrace system proposed by van den Hengel et al. [2007]
interactively generates 3D models of objects from video. The user
traces polygon boundaries over video frames. While in the work
of Sinha et al. [2008] a single image is sufficient to accurately
reconstruct polygonal faces, VideoTrace repeatedly reestimates the
3D model by using other frames.

A large number of mesh reconstruction methods have been
proposed over the years: popular approaches include extended
marching cubes by Kobbelt et al. [2001], the Delaunay re-
finement paradigm [Boissonnat and Oudot 2005], and implicit
approaches [Kazhdan et al. 2006; Alliez et al. 2007; Schnabel et al.
2009]. Typically, all these methods need to generate high-resolution
meshes in order to recover sharp edges. More recently, Salman
et al. [2010] have improved the accuracy of reconstructions for a
prescribed mesh size while ensuring a faithful representation of
sharp edges. Still, their method does not yield models of low face
count and visual quality as required in this work (refer to Figure 15).
Instead of applying an extensive postprocessing pipeline (e.g., cen-
tered around Cohen-Steiner et al.’s [2004] shape approximation),
we propose to integrate all requirements into a single optimized al-
gorithm: our method fits median planes to the input data, accurately
reconstructs sharp edges from the intersection of these planes, and
generates coarse polygonal models (with the complexity defined
by the number of planes). Most importantly, our method is good at
handling surfaces with boundaries: all our input data is incomplete,
with missing parts and holes due to the acquisition process.

Recent commercial systems such as SketchUp have been
designed to quickly create 3D models from users’ sketches.
The Pointools [2011] plugin for SketchUp allows users to model
directly over 3D point clouds, but the accuracy of the reconstruction
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Fig. 1. An overview of our reconstruction and modeling pipeline, from left to right: Starting from a noisy and incomplete point cloud, we decompose the input
data into subsets lying approximately on the same plane (left). The boundary points of each subset are extracted and used to estimate coarse polygons (middle
left). Local adjacency relations are automatically discovered (middle left) and enforced via a nonlinear optimization to snap polygons together, providing an
initial reconstruction (middle right) that can then be interactively refined by our optimization-aided sketch-based interface within a few clicks (middle right),
yielding a coarse polygonal model that well approximates the input point cloud (right).

depends on the skills and patience of the user, since the sketched
geometry has to be manually aligned to the point cloud by visual
inspection. In addition, the plugin offers a simple snapping tool
that allows snapping the endpoint of a sketched line to a nearby
point in the point cloud. In practice, this feature can be used to
coarsely sketch the floorplan of a building, but is impractical for
more detailed modeling tasks due to the noise inherent in point
clouds, as there is no way to align a primitive to a set of points.
Furthermore, gaps that appear in the modeling process have to
be closed manually by moving edges. In contrast, we optimally
reconstruct planar primitives by least-median fitting to the point
data. Moreover, we automatically discover adjacency relations,
which allows us to run a planarity-preserving optimization-based
snapping algorithm to close the model.

GlobFit, recently introduced by Li et al. [2011], iteratively learns
mutual relations among primitives obtained by the RANSAC algo-
rithm [Schnabel et al. 2007]. Their system seems to be complemen-
tary to ours: While they focus on discovering global relations (like
orthogonality, coplanarity, etc.) among parts of the model to correct
the primitives, our strength lies in the automatic discovery of local
adjacency relations between polygon elements. To produce a final
model (which is not their primary goal), Li et al. [2011] only ex-
trapolate and compute pairwise primitive intersections. While it is
relatively easy to locally extend individual polygons, intersections
of multiple primitives can be highly complex and reconstruction
becomes nontrivial.

3. OVERVIEW

Our system takes as input a set of 3D points, for example, from
a laser scanner, photogrammetric reconstruction, or similar source.
The goal is to create a polygonal model suitable for interactive
applications and not influenced by the noise and holes inherent in
the input data. The reconstructed polygonal model will be watertight
wherever feasible; in this article we shall denote such a model a
closed model. It is important to emphasize that we do not assume
our target surfaces to be closed in a topological sense.

Modeling consists of two phases: an automatic phase that cre-
ates an initial model, and an interactive phase that is aided by
optimization-based snapping.

3.1 Automatic Phase

In the automatic phase, the input data is decomposed into subsets
lying approximately on the same plane (Figure 1, left). Throughout

the article, we refer to these subsets as segments. For each such
segment, boundary polygons are estimated in the polygonalization
step (Section 4, Figures 1 middle left and 3). The resulting model
still has holes and is not well aligned.

We therefore introduce an intelligent snapping algorithm
(Section 5) that constrains and optimizes the locally fitted planes
and their corresponding polygons. The local fit of the planes is
determined by how well the planes approximate the observed
point cloud data, while the mutual spatial relations, that is,
adjacency relations between polygon elements, are iteratively
computed and enforced through a nonlinear optimization. This
“intelligent snapping” is a crucial part of our approach: Instead of
simply snapping to existing geometry or features within a given
distance [Sinha et al. 2008; van den Hengel et al. 2007], we define
a feature-sensitive matching and pruning algorithm to discover
a robust set of adjacency relations among parts of the polygons
(Figure 1, middle left). The polygons are then aligned by enforcing
the extracted relations, while best fitting to the input data and
maintaining the planarity of the polygons (Figure 1, middle right).

Note that while a completely automatic reconstruction of a whole
building can hardly be achieved due to erroneous and missing data,
our automatic phase produces results that are comparable to previ-
ous automatic systems, for example Chen and Chen [2008], who
assume the existence of a complete set of planes.

3.2 Interactive Phase

Since the initial geometry proposal from the automatic phase can
not guarantee a perfect solution in all cases, the interactive phase
provides a simple and intuitive sketch-based user interface (Sec-
tion 6) that directly interoperates with the optimization routines.
Even though such manual interventions cannot be completely omit-
ted, the novel system differs significantly from other 3D modeling
techniques by exploiting the previous analysis: Due to the known
supporting planes, the modeling complexity is reduced from a 3D to
a 2D problem. This allows the user to model the necessary changes
with a few simple and loose strokes on a flat layer, as the exact align-
ment is performed interactively by the optimization-based snapping
algorithm (Figure 1 middle right).

4. POLYGONALIZATION

We use a local RANSAC-based method [Schnabel et al. 2007] to
decompose the input point cloud into subsets (referred to as seg-
ments), each lying approximately on a plane, and a set of unclaimed
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Fig. 2. The first step of the automatic reconstruction pipeline, a local
RANSAC-based method, may capture nearby parallel structures (e.g., win-
dows and facade) as a single segment (left). The least-median of squares
method is used to fit a plane to the points of the dominant structure (mid-
dle left). By applying k-means clustering (k = 2) (and subsequent automatic
polygonalization and optimization) in the interactive modeling phase, a more
detailed hierarchical reconstruction (middle right, right) is achieved.

points. Even though the decomposition requires normal informa-
tion, the correctness of normals close to sharp edges is not critical
for the subsequent estimation of plane primitives (Section 4.1.1)
and the rest of our pipeline. Hence, our implementation approxi-
mates 3D normal vectors from point positions by applying a local
PCA [Jolliffe 2002] with fixed size neighborhoods.

A segment may consist of multiple connected components (e.g.,
front faces of all individual balconies on a facade), which are later
separated by the boundary extraction algorithm (Section 4.1.2).

The goal of the polygonalization step is to divide the segments
from the RANSAC stage into connected components, and approx-
imate their outlines by coarse polygons. In the first step, we divide
each segment into one or several connected components, and ex-
tract their ordered boundary points (Figure 3 top left), which act as
initial polygons. Since the extracted boundaries are generally noisy,
we cannot assume that we have high-quality vertex normal orien-
tations. In the second step, we compute a smooth region around
each point (Figure 3 top right), to which we then apply a local
PCA to estimate initial 2D vertex normals (Figure 3 middle left).
Finally, we reconstruct 2D vertex normals based on their initial
values and a neighborhood relationship derived from the smooth
regions (Figure 3 middle right), and use the reconstructed normal
vectors to compute consistent vertex positions (Figure 3 bottom
left). This process straightens the initial boundaries and thus pro-
vides a polygonal approximation of the 2D components on a coarse
scale (Figure 3 bottom right).

4.1 Initialization

4.1.1 Plane Fitting. The polygonalization is computed in 2D
space defined by the segment plane. The first step is therefore
fitting a plane to all the points contained in a segment obtained by
RANSAC. As depicted in Figure 2 (left), nearby parallel structures
(e.g., main facade and windows) may have been detected as a
single segment. We therefore apply a Least Median of Squares
(LMS) estimator [Rousseeuw and Leroy 1987], which consistently
finds the main structure (see Figure 2 middle left), as it is capable
of fitting a model to data that contains up to 50% outliers.

4.1.2 Boundary Extraction. In order to divide each segment
into connected components and extract their ordered boundary
points, we employ 2D α-shapes [Edelsbrunner and Mücke 1994]
(with α controlling the number of connected components and the
level of detail of their boundaries) on the segment points projected

Fig. 3. Overview of our polygonalization pipeline. Ordered boundary
points (initial polygon) of a connected component are extracted (top left).
By applying PCA to smooth regions Q (top right), vertex normals are ini-
tialized (middle left). Initial vertex normals are smoothed over neighboring
vertices (with p and q neighboring if they are mutually contained in their
respective smooth regions) (middle right) and used to compute consistent
vertex positions (bottom left). Finally, a corner detection algorithm extracts
the approximating polygon.

to the median plane. The family of 2D α-shapes of the set of pro-
jected segment points S is implicitly represented by the Delaunay
triangulation of S. Each element (vertices, edges, and faces) of the
Delaunay triangulation is associated with an interval that specifies
for which values of α the element belongs to the α-shape. The con-
nectivity of the Delaunay triangulation and the classification of its
elements with respect to the α-shape is then used to extract the con-
nected components and their ordered boundary points. We estimate
α using the average distance between neighboring points.

4.2 Polygon Straightening

The goal of this step is to robustly estimate for each boundary
a coarse polygon that approximates the original shape’s outline.
Most surfaces used in architecture, especially at the level of detail
relevant for polygonal modeling, are bounded by straight lines that
meet in sharp corners. We also require from our method that it is
fast, since we need interactivity during the modeling process (see
Section 6.6).

Our method is inspired by the �1-sparse method [Avron et al.
2010] for the reconstruction of piecewise smooth surfaces. How-
ever, we found the �1 formulation computationally too expensive,
compared to our �2 approach counting only a few or even no
reweighted iterations (the �1 formulation’s second-order cone pro-
gramming solver needs to solve a series of linear systems of compa-
rable dimension to our setting). We tackle stability issues inherent
to least-squares approaches (such as sensitivity to outliers) with
statistical methods. In particular, we rely on the forward search
method [Atkinson and Riani 2000] and present a novel method
combining the simplicity of least-squares minimization with the
strength of robust statistics.

4.2.1 Neighborhood Estimation. Similar to Fleishman et al.’s
[2005] approach, we classify a locally smooth region around each
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vertex by applying the forward search method, which preserves
sharp features and is robust to noise and outliers. The main idea in
forward search is to start from a small outlier-free neighborhood Q
and to iteratively extend the set Q until a termination criterion is
met. Starting from Q and the model (in our case, a line) that is fitted
to the points in Q, one iteratively adds one point to the set Q (the
point with lowest residual) and updates the model at each iteration,
until the diameter of Q exceeds a threshold dmax . Figure 3, top right,
shows an example of a smooth region around a point p computed
with forward search. Two polygon vertices p and q are said to be
neighboring, if q ∈ Qp and vice versa. The diameter threshold dmax

is the only parameter that affects the output of our polygonalization
method. Since dmax controls the local region sizes, we avoid high
values of dmax (usually set to minimum expected feature size) to
prevent oversmoothing of sharp features.

4.2.2 2D Normal Estimation. We then estimate consistently
oriented vertex normal vectors (Figure 3, middle right) based on the
neighborhood relationship computed by the prior step. As in Avron
et al. [2010], our least-squares minimization to reconstruct vertex
normals consists of two terms and is formulated as

E1 =
∑

(p,q)∈N

wp,q‖np − nq‖2 + λ
∑

p

‖np − n0
p‖2. (1)

The first term minimizes the normal differences and extends
over the set N of all neighboring vertices. The second term prevents
the vertex normals n from deviating too much from their initial
orientations n0. The weighting function wp,q in Eq. (1) penalizes
variations in normal directions, and is given by the Gaussian filter

wp,q = e−(θp,q /σ )2
, (2)

where θp,q is the angle between the normal vectors np and nq and
σ is a parameter set to 20 degrees in all our examples.

The normal vectors are initialized (refer to Figure 3 middle left)
by applying PCA to the local smooth regions computed by the prior
step. The consistency of the initial normal orientations is provided
by the order of the boundary points.

4.2.3 2D Polygon Smoothing. We then compute consistent ver-
tex positions (Figure 3, bottom left) by displacing polygon vertices
in normal direction, that is,

p′ = p + tpnp.

Similar to Avron et al. [2010], the new vertex positions p′ are
computed as the minimizer of the energy function

E2 = E2,s + E2,init (3)

with

E2,s =
∑

(p,q)∈N

wp,q

(∣∣(p′ − q′) · nq

∣∣2 + ∣∣(q′ − p′) · np

∣∣2
)

and

E2,init = μ
∑

p

t2
p.

The first term smoothes (straightens) the polygon boundary by min-
imizing the deviation of q from the tangent through p weighted ac-
cording to the confidence measure wp,q (Eq. (2)) and vice versa. The
second term prevents the polygon vertices from deviating too much
from their initial positions and as a consequence avoids shrinking
of the polygon.

Both functionals E1 and E2 (Eqs. (1) and (3)) are mini-
mized using a Gauss-Newton method. Since we use forward

search to reconstruct outlier-free regions, we require only three
reweighted iterations to minimize E1 and a single iteration to min-
imize E2. The weight parameters λ and μ are set to 0.1 in our
datasets.

4.3 Polygon Extraction

The process described before provides us with a set of straightened
boundary points with high-quality vertex normals, which are then
used by a simple corner detection algorithm to extract approximat-
ing coarse polygons (Figure 3, bottom right).

We classify a vertex as an edge vertex if its normal vector is almost
parallel to the normal vector of the succeeding and preceding vertex,
respectively. Then we approximate sequences of edge vertices in a
least-squares sense and obtain edge lines. A corner is detected at
the intersection point of two successive lines. Note that vertices that
are isolated in our neighborhood relationship graph are potential
outliers or influenced by noise inherent in the initial boundaries,
and thus not used by the corner detection algorithm.

5. POLYGON SOUP SNAPPING

The result of the polygonalization step is a soup of unconnected
polygons P = {P1, . . . , Pn}. The snapping process aims at clos-
ing the holes between the polygons of the polygon soup, and is
used both in the initial automatic reconstruction and during interac-
tive modeling. Snapping iteratively pulls polygon vertices towards
other polygons, while simultaneously refitting P to the underlying
point cloud and preserving the planarity of polygons. Each iteration
consists of the following two steps.

—Robust search for adjacencies, which for each vertex identifies
the possible matches to other vertices, edges, or faces and discards
false ones.

—Optimization, which enforces the set of discovered adjacency
relations to snap the polygon soup together.

The process terminates when the polygon soup stabilizes, that is,
it becomes a closed model and satisfies the requirements given
by the constraints. Our snapping process is related to Botsch
et al. [2006] and Kilian et al. [2008], however, our system requires
the optimization for various other constraints and in particular, the
relations between the polygons are not known a priori. We now
describe the steps in detail.

5.1 Robust Search for Adjacencies

The problem of matching the elements of the polygon soup to a
closed model in a feature-aware manner is inherently ill-defined.
The expected bad quality of the real-world datasets and the lack
of any high-level input to the reconstruction pipeline (such as
shape templates or semantic information) prevent a rigorous math-
ematical definition. Instead, we propose an automatic and robust
algorithm based on stable vertex-vertex/edge/face and edge-edge
matches.

Adjacencies in the model are discovered by searching for matches
between polygon elements. There are five mechanisms that con-
strain the allowed matches: (1) An auxiliary global parameter rmax

defines the maximal gap size to be closed in the model. (2) Intrinsic
stability locally avoids self-intersections, flip-overs, edge and diag-
onal collapses. (3) An extended set of matching candidates allows
more degrees of freedom (thus a more connected model) where
(2) is too restrictive. (4) Local pruning fixes problems mostly in-
troduced by (3), and (5) global pruning prevents degeneration of
polygons (especially of thin features) by considering global issues
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of matches affecting more than two polygons. We first describe the
different match types, constrained by (1–3), and then show local and
global pruning. Please note that the choice of rmax doesn’t influence
the stability of the pruning algorithms, but only defines the maximal
gap size.

5.1.1 Vertex-Vertex Matching. We define an adaptive search
radius for each vertex of the model. The requirement of intrinsic
stability bounds the search radius to half the minimal distance from p
to the polygon’s boundary, d∂ (p) := mine∈∂P \p d(p, e), where ∂P \p
denotes the polygon boundary after removal of p and its incident
edges. Half the distance d∂ prevents vertices being matched across
polygon edges (self-intersections, flip-overs) or vertices (edge or
diagonal collapses). To respect the given upper bound, we define
r(p) := min(rmax, d∂ (p)/2) as the adaptive search radius of p.

The candidate set of matches for a vertex p comprises all vertices
of P \ P within search distance r(p). If this candidate set is empty,
the closest vertex in P \ P (if not further than rmax) is included. By
doing so, we may violate intrinsic stability intentionally to maintain
sufficient degrees of freedom. A subsequent pruning step, described
shortly, will restore validity at a later stage, if necessary. We define
rc(p) := max(r(p), min(dc, rmax)) (with dc being the distance of p
to its closest vertex in P \ P ) as the extended search radius of p.

A priori, two vertices p and q are considered matching, if they
are mutually included in their respective extended search radii,

‖p − q‖ ≤ min(rc(p), rc(q)).

Finally, two matching vertices are supposed to collapse into a corner
point at the later optimization stage. Such a corner point is incident
to the intersection line l of the two corresponding supporting planes.
Consequently, we further require a pair of matching vertices to be
in feasible distance to l,

d(l, p) ≤ rc(p) and d(l, q) ≤ rc(q).

Please note that the computation of l is numerically stable, as the
RANSAC stage gives a priori knowledge about polygons in the
same supporting plane.

5.1.2 Vertex-Edge Matching. In a similar fashion to vertex-
vertex matches, we establish correspondences between vertices and
edges. We assign a search radius to each edge e = (p0, p1) as the
minimal search radius of its endpoints, r(e) = min(r(p0), r(p1)).
A vertex p is matched to an edge e if its orthogonal projection onto
the line spanned by e is in the edge’s interior, and (analogous to a
vertex-vertex match) the two following expressions hold true:

d(p, e) ≤ min(r(p), r(e)),

and

d(l, p) ≤ r(p) and d(l, e) ≤ r(e),

where l is the common intersection line of the corresponding sup-
porting planes.

5.1.3 Other Matches. To complete the survey of matches, a
vertex p is paired with a face f if its orthogonal projection onto the
plane spanned by f is in the face’s interior and no further than search
radius r(p).

Based on the vertex-vertex and vertex-edge matches, we may fur-
ther derive edge-edge matches: Two edges are said to match if their
endpoints either induce two vertex-vertex matches, a vertex-vertex
and a vertex-edge match, or two vertex-edge matches. Edge-edge
matches are used only in the matching and global pruning stage
and not for optimization, as their contribution to reconstruction is

p q

m

e0 e2e1

Fig. 4. The false match m = (p, q), which forces the center polygon’s edge
e1 to collapse and thus violates the intrinsic stability, is reliably detected by
our global pruning strategy.

implicitly included through vertex-vertex/edge matches. The same
holds in an even stricter sense for edge-face and face-face matches,
which are either implied by vertex-vertex/edge/face matches or are
not present in the data due to occlusion in the acquisition process.

5.1.4 Local Pruning. The vertex-vertex matching yields gen-
erally stable results. A few false matches, which result from the
inclusion of closest vertices in candidate sets, are corrected in the
following pruning step: Consider two or more vertices qi of poly-
gon Q being matched to a vertex p ∈ P . This clearly violates
the intrinsic stability requirement for Q and we remove all but the
closest matching pair. This and all subsequent pruning steps are im-
plemented on a graph representation G = (V,EM ) of the matches,
with all vertices and edges of P comprising V and the edge set
EM being given by the set of all matches obtained from before
(except vertex-face matches). Pruning at this point boils down to
investigating all one-ring neighborhoods of G.

Similar to vertex-vertex matching, intrinsic stability demands the
pruning of those vertex-edge matches where a vertex corresponds to
multiple nonadjacent edges of a polygon. This can naturally happen
due to overlapping search cylinders (with radii r(e)) around edges.
Using the graph G, we compress this subset of matches to the closest
vertex-edge match.

5.1.5 Global Pruning. Up to now, the matches have been
obtained on a local level only. They disregard any global issues
affecting more than two polygons. Consider the situation in
Figure 4, with three polygons stringing together and several of the
corner points being matched. The vertex-vertex match between p
and q, jumping the center polygon, is not feasible, as it implies
a degeneration of the center polygon’s edge. Such a degeneration
happens when certain polygon elements (vertices/edges) are
connected through matches so that they form a cycle. The reason
is that we have to assume that all polygon elements connected
through matches might be joined to the same location during
the optimization phase. In this section we therefore present our
approach to define and find such cycles. We also show a second
approach based on geometric tests for cases where the detection of
cycles doesn’t necessarily imply a degeneration.

For the example in Figure 4, to detect the contraction of the
edge e1, it would be sufficient to extend the edge set EM in the
matching graph G defined earlier by the actual polygon edges, and
find the cycle (m, e0, e1, e2) in the resulting graph. However, there
are many other cases that would lead to a polygon degeneration,
namely, whenever a match would cause two elements of a polygon
to contract; see Figure 5 for several examples.

We therefore introduce an extended matching graph Ge that pre-
vents all these internal contractions by representing them explic-
itly through so-called constraint edges. Formally, Ge = (V,Ee) is
a graph with V comprising the polygons’ elements (vertices and
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e1e1e1 e1

m

m

m

m

Fig. 5. Top row: Examples of false matches m which would cause the constraint edges (denoted by e1) to contract. Bottom row: We reliably avoid such false
matches by searching for cycles in the extended matching graphs (only the matches of the cycles shown here).

Fig. 6. Construction of the extended matching graph Ge = (V,Ee): Each
polygon’s vertices (orange) and edges (blue) constitute the node set V (left).
The edge set Ee combines the set of all vertex-vertex/edge and edge-edge
matches (not shown here), and the constraint set. The latter connects all
pairs of elements in V of the same polygon, except polygon vertices with
their incident polygon edges (right).

edges, see Figure 6 left). The edge set Ee = EM ∪EC combines the
set of matches EM , and the constraint set EC . The latter connects
all pairs of elements in V of the same polygon, except polygon ver-
tices with their incident polygon edges (see Figure 6 right). Figure 5
shows several examples where the detection of an appropriate cycle
containing a constraint edge (denoted by e1) in Ge causes a false
match to be pruned.

Our strategy is now to determine for every vertex-vertex/edge
match m = (p, q) ∈ EM whether it is part of a “harmful” cy-
cle. We first note that we only look for cycles c(m) where m
is directly connected to another match on either side, that is,
c(m) = (m, e0, . . . , en) with e0, en ∈ EM . The reason is that the
degeneration of the constraint edges of p and q’s polygons is al-
ready handled in the local pruning phase. Further, we ignore cycles
containing more than one constraint edge, for reasons explained
further shortly. Thus, we look for cycles c(m) = (m, e

k0
0 , e1, e

k2
2 ),

with e1 ∈ EC and e
ki

i = (ei,1, . . . , ei,ki
) ∈ E

ki

M (eki

i abbreviated as ei

for ki = 1), ki ≥ 1 (see Figure 7 top).

m

ek0
0

ek2
2

... ...
e
1p q

m

ek0
0

...p q

...

eki
i

ekn
n

eki+1
i+1

.......

...

...

.......

Fig. 7. Illustration of our global pruning idea: We search for each vertex-
vertex/edge match m = (p, q) an edge cycle with only one constraint edge
(denoted by e1) in the extended matching graph Ge (top). If such a cycle
exists, we prune m (refer to Figures 4 and 5). Otherwise, we search for match-

paths (ekl
l , m, e

kj

j ) in the actual matching graph G (bottom). Subsequent
matches in the paths induce further matches (refer to Figure 8), which are
then used to geometrically verify whether m leads to polygon degenerations.

If we find such a cycle, the corresponding match can be pruned
directly, because the cycle forces the constraint edge e1 to con-
tract (see Figures 4 and 5). However, in some rare cases (where
polygons’ elements meet at nonmanifold vertices/edges of the final
model) we also observed the pruning of a few “correct” matches.
For the convergence of n polygon elements to the same location,(
n

2

)
connections (matches) are possible, but only n − 1 involving all

those n elements are sufficient. Thus in practice, the pruning of a
few “correct” matches doesn’t indicate a problem.

Most of the degenerations in the model can already be avoided
by pruning cycles with one constraint edge. However, there are also
some cases involving several constraint edges; see Figure 8 right.
Unfortunately, this situation cannot be detected unambiguously
by searching for cycles, as can be seen in Figure 8 left. To solve
this problem, we present a more general approach that is based on

ACM Transactions on Graphics, Vol. 32, No. 1, Article 6, Publication date: January 2013.



6:8 • M. Arikan et al.

m
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e0

e1

e2

e3

e4

m

mi

e0
e1 e2

e3 e4

Fig. 8. Cycles (here (m, e0, e1, e2, e3, e4)) in the extended matching graphs
Ge containing more than one constraint edge can be “harmful” (right) or not
(left), and thus are not a good indicator for pruning. Instead we geometrically
verify whether the induced matches (denoted in green by mi ) resulting from
subsequent matches (e0,m, e4) in the matching graphs G cause polygon
degenerations. Please note that in the right image, m is selected in the
matching phase due to large search radii of the corresponding vertices (we
show only a part of the polygons here).

investigating sequences of matches. Such sequences induce further
matches between the elements they connect, in the sense that in
the optimization phase, these elements will also be joined. We thus
need to verify whether the induced matches do not cause polygon
degenerations.

Formally, for a match m, we search for paths (ekl

l , m, e
kj

j ) (with
kl, kj ≥ 0) in the actual matching graph G (see Figure 7 bottom).
We then check whether all of the induced matches mi are in EM

as well. For every match that is not in EM , we need to verify
geometrically whether it would lead to a polygon degeneration. Here
we note that an induced match does not necessarily join the attached
elements directly (e.g., two subsequent vertex-edge matches m1 =
(p, e) and m2 = (e, q) do not induce the vertex-vertex match m3 =
(p, q), but both vertices project to the same edge). To geometrically
verify whether an induced match leads to any degeneration, we
project the vertices and/or edge endpoints of the match onto the
common intersection line l of the polygons’ supporting planes.
We prune m if one of the thus-modified polygons (with projected
vertices/edges) has a flipped normal vector orientation (flip-over) or
has self-intersections. Note that the number of paths to investigate is
typically low because paths containing only matches stay localized.

5.2 Optimization

Based on the discovered adjacencies, we transform the polygons
to optimally align with each other, while preserving their planarity
and fitting to the input point cloud.

As in Kilian et al. [2008], we introduce a Cartesian coordinate
system in the plane of each P ∈ P , with origin o and basis vectors
f1 and f2, and represent a point p ∈ P by the coordinates (px, py), so
that p = o+pxf1 +pyf2. During the optimization, in order to reduce
the spatial gaps between adjacent polygons, the coordinates (px, py)
are displaced, while the Cartesian coordinate systems undergo a
spatial motion. We linearize the spatial motion of each coordinate
system by representing the displacement of each point through the
velocity vector field of an instantaneous motion, given by v(x) =
c̄+c×x. Thus the position of a vertex p ∈ Pi during the optimization
can be written as

p = oi + c̄i + ci × oi + px(fi1 + ci × fi1 ) + py(fi2 + ci × fi2 ) (4)

in the unknown parameters ci , c̄i ∈ R
3 of the velocity vector field

attached to Pi and in the unknown coordinates (px, py) (this can
be derived by applying the displacement x ′ = x + v(x) for x ∈
{oi , oi + fi1 , oi + fi2}).

5.2.1 Snapping. With the adjacency relations discovered by the
prior step, we measure the snapping error as

Esnap =
∑
i,j,k,l

d2(pi , pj ) + d2(pi , ek) + d2(pi , Pl),

where d2(pi , ·) denotes the distance of vertex pi to the vertex pj ,
edge ek , and face Pl , respectively.

5.2.2 Point Cloud Deviation. For the polygon soupP not to de-
viate too much from the input point cloud, we use the reference term

Eref =
|P|∑
l=1

|Pl |∑
i=1

d2(pi(l), P
init
l ). (5)

The preceding equation minimizes the sum of squared distances
of vertices pi(l) ∈ Pl to the initial planes P init

l (see Section 4.1.1).
Manually sketched polygons without underlying segments
(Section 6.3) are excluded from Eq. (5).

5.2.3 Orthogonality. In order to meet orthogonality constraints
that naturally exist in urban environments, we include the following
two terms

E⊥1 =
∑
i,j

wij (ni · nj )2 (6)

and

E⊥2 =
|P|∑
l=1

|Pl |∑
i=1

wi(l)(ei(l) · e(i+1)(l) mod |Pl |)
2, (7)

which measure the orthogonality of adjacent polygons and succes-
sive polygon edges, respectively. With the unit normal vector of P
given by n = f1 × f2, Eq. (6) extends over all pairs of polygons,
with wij = 1 for adjacent polygons with normals deviating from
orthogonality by less than π

9 , and zero otherwise. Optimizing for
orthogonality of polygon boundary edges ei(l) in Eq. (7) (with wi(l)

defined similar to wij for polygons) might result in degenerating
edges of vanishing length. This problem is in particular evident in
case of missing geometry and is overcome by minimizing the sum
of squared distances to current vertex positions p′

i as follows.

Ecur =
∑

i

d2(pi , p′
i)

5.2.4 Global Energy and Weights. The previous energy terms
are combined into the objective function

E = λsnapEsnap + λref Eref + λ⊥(E⊥1 + E⊥2 ) + λcurEcur ,

which is minimized using a Gauss-Newton method. Instead of
decoupling the optimization as in Kilian et al. [2008], we solve
simultaneously for the parameters of the velocity vector fields
attached to the polygons and the 2D coordinates of the vertices,
resulting in a nonlinear optimization problem due to the products
pxci and pyci (Eq. (4)). Transforming the Cartesian coordinate
system of Pi corresponding to the pair (ci , c̄i) would not yield
a rigid body motion, but an affine one. Therefore we use the
underlying helical motion, which ensures rigidity, as described by
Pottmann et al. [2006]. The weights λ allow additional control of
the optimization. We used λsnap = 1, λref = 0.5, λ⊥ = 0.01 and
λcur = 0.1 for all the models shown in the article.

6. INTERACTIVE 2D MODELING

On top of automatic polygon creation and polygon soup snapping,
we propose an interactive editing and modeling system that provides
a novel way of user-guided 3D content creation and reconstruction.
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Fig. 9. Sketching of a polygon in an area without an underlying segment:
An edge of an adjacent polygon is selected by moving the mouse over it
(left). The camera view direction aligns with the edge, and a perpendicular
sketching plane is used to sketch a point (middle). The new plane is defined
by the edge vertices and the sketched point, and initialized with a rectangular
polygon (right).

All user interaction is reduced to sketch-like approximate 2D opera-
tions by automatically choosing an appropriate 2D modeling space
based on segment planes in the underlying point cloud. Implicitly
dropping one dimension drastically reduces interaction complex-
ity and thereby reduces overall modeling effort. At the same time,
consistency and accuracy of the reconstructed model increase due
to the interactive optimization performed after each modeling step
(please see the accompanying video).

6.1 Plane Selection

All modeling operations are based on and limited to planes. The ac-
tive plane is chosen by selecting a polygon or a point cloud segment
with a single mouse click. On demand, the camera’s view direction
aligns to the plane normal, allowing a “2D top-down view” onto it.

6.2 Polygon Editing

Polygons, which have either been created automatically or sketched
by the user (see the following), can be modified arbitrarily. Once
in focus, the editing steps are comparable to a simple 2D vector
graphics editing program: By moving the mouse cursor over the
corresponding region, a vertex, an edge, or the whole polygon is
chosen for manipulation and can be dragged anywhere on the un-
derlying plane. Vertices can be added by right-clicking on an edge,
and removed by right-clicking on a vertex.

Individual polygons lying on the same segment plane, which may
occur due to holes in the point data, can easily be merged by drag-
ging polygons over each other, resulting in a single polygon consist-
ing of their combined convex hull. We opted for this fast interactive
method of solving such cases instead of closing the holes automati-
cally, as there are various situations in which such individual copla-
nar polygons are intended (e.g., front faces of balconies on a facade).

6.3 Polygon Sketching

In sketching mode, the selected plane also acts as a drawing area for
new polygons. Manual sketching is applied whenever a segment has
no polygons assigned (too few points), or if the existing polygon
has been estimated wrongly due to noisy and missing data. In some
cases, it can even be faster to replace the polygon by a new one
instead of repairing it. Sketching is performed by approximately
clicking the new vertex positions on the sketch plane. Existing
polygons overlapping the new one are automatically removed.

Since we are dealing with noisy data, sparsely sampled parts of
the model will most likely not be found in the RANSAC stage,
excluding both automatic polygonalization as well as plane-based
sketching in these areas. We therefore implemented an intuitive
way to model arbitrary planes adjacent to existing polygons (see

Fig. 10. A hierarchy relation between a dominant facade plane and a door
is defined with a single click (left). Side faces are automatically extruded
(middle) and contribute to the snapping process: Due to the newly found
matching pairs, a continuous surface is in this case generated within a few
optimization iterations (right).

Figure 9): The user chooses an edge e of a polygon on which the
new plane should attach to by hovering over it with the mouse cursor.
By entering the sketching mode, the camera view direction aligns
with the edge (i.e., e is only visible as a point then), and the user
selects a point p on the plane perpendicular to the selected edge.
The new plane is built using p and the vertices of e, and initialized
with a rectangular polygon.

6.4 Interactive Optimization

It is important to note that both editing and sketching operations
only have to be performed very coarsely. As long as the approxi-
mate shape of the polygon is given, automatic snapping will align
vertices with other parts of the model by favoring right angles while
simultaneously refitting the polygon soup to the underlying point
cloud. Optimization is therefore interleaved with each individual
modeling step, providing the user with immediate feedback. When
sketching completely new parts of a model, interactive optimization
can also be switched off on-demand.

6.5 Hierarchies

The noisier and more sparsely sampled the faces to reconstruct are,
the less likely it is that a suitable plane to sketch on can be found
in the RANSAC stage. Depending on the chosen acquisition angle
and technique, some faces may not even be depicted in the point
cloud data at all. Despite the possibility to easily define arbitrary
planes as described earlier, modeling the side faces of features
like balconies, bays, or windows remains a time-consuming and
tedious task. We therefore allow the definition of hierarchy relations
between the polygons by “connecting” a child polygon to a parent
polygon with a single click: The corresponding side faces are then
implicitly generated by extruding the child polygon’s edges to its
parent plane, reducing the modeling time to a few seconds (the
corresponding holes in the parent polygons are created using a
simple difference set operation PParent\PChild ). This approach was
used for example in Figure 2 right.

The generated side faces also contribute to the interactive opti-
mization, which proves extremely useful in cases like doors situated
at the bottom of a parent facade plane (see Figure 10): the vertices
of the parent polygon lying in the front do not have to be manually
edited, but are automatically attached to the side faces, generating
a continuous surface with a single click.

Our hierarchy definition is extremely useful to model thin features
(see Figure 11), as child polygons (belonging to different parent
polygons) may snap to each other.

6.6 Manual Segment Division

As discussed in Section 4.1.1 and shown in Figure 2 (left), nearby
parallel structures may be captured as a single segment. Therefore
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Fig. 11. The snapping is not restricted to the reconstruction of the main
structure and to child-parent relations, but it can also handle child-child
relations to reconstruct detailed geometry: Two child polygons and their
parent polygons after the manual segment division and subsequent polygon
extraction (left). The child polygons snap to each other and the corresponding
side polygons are projected correctly to the main structure to form the
column (right).

Fig. 12. Reconstruction of a building complex occluded by trees and
bushes. Top left: An example photo of the dataset. Top right: The segments
extracted from the sparse point cloud (obtained from a photogrammetric
approach) and the main structures after approximately three minutes of
optimization-aided modeling. Bottom left: The reprojected images help the
user to modify the polygon boundaries and to sketch new polygons forming
the balconies. Bottom right: The final model after 20 minutes using the
additional image information.

we offer the user the opportunity to manually divide (Figure 2
middle right,) a selected segment by applying k-means clustering
(k = 2). For the emerging segments, new polygons are automat-
ically created (see Section 4, Figures 2 middle right, and right).
By combining the manual segment division with the hierarchy
definition, complete facades including windows, balconies, and
doors can be modeled within seconds (see Figures 1, 10, and 11).

7. RESULTS

We have tested our reconstruction and modeling pipeline on a
variety of datasets, including six point clouds obtained from
photogrammetric methods (Figures 12 and 18), a laser scan (Fig-
ure 15), and a synthetic model (Figure 16). Figure 18 demonstrates
the individual steps of our framework. Figures 12, 14, and 13 illus-
trate several applications. Figure 15 compares a model created using
our system to the results of mesh reconstruction and decimation al-
gorithms. The synthetic model, Figure 16, is used to validate the ac-
curacy of our algorithm. Interactive modeling sessions for the town
hall and church models can be observed in the accompanying video.

Fig. 13. A paper model of Town Hall.

Fig. 14. By design, the reconstructed models offer the generation of shape
variations by exploiting the underlying adjacency graph.

7.1 Performance and Scalability

In all our test scenes, interactivity could easily be maintained dur-
ing the modeling sessions on a standard PC workstation (Intel i7
920 CPU with 2.67 GHz, 4GB RAM): The computationally most
expensive step after a modeling operation, matching and pruning,
is computed within an average time of 0.2 seconds, while the op-
timization and the update of the rendering scene graph only take a
few milliseconds to perform. We solve the sparse systems of linear
equations at each Gauss-Newton iteration by a sparse QR factoriza-
tion [Davis 2011].

Note that in our current implementation, the adjacency (match-
ing) graph is completely rebuilt from scratch after each modeling
step. In our test scenes, we experienced an adjacency graph rebuild
time of one second as the worst case. By building the graph only
once and updating it locally after each modification, the compu-
tational effort for the graph update could be decoupled from the
geometric complexity, removing this potential bottleneck and keep-
ing the modeling process interactive in larger-scale scenes.

7.2 Convergence

Solving the problem presented in Section 5 is a challenging task
since we deal with an optimization problem that is:

(1) nonsmooth: the set of computed adjacencies is a discrete
variable,

(2) nonlinear: due to the simultaneous optimization of the param-
eters (refer to Section 5.2.4), and

(3) constrained: the polygons shall remain planar.

To account for (1), we decouple the computation of the adjacen-
cies from the rest of the optimization: at each iteration, we first fix
the position of the polygons’ vertices and search for adjacencies.
Then, we fix the adjacencies and optimize vertex positions.

ACM Transactions on Graphics, Vol. 32, No. 1, Article 6, Publication date: January 2013.



O-Snap: Optimization-Based Snapping for Modeling Architecture • 6:11

Fig. 15. Top left: Input point cloud (provided courtesy of INPG by the
AIM@SHAPE Shape Repository) downsampled to 10% of the original
dataset. Top right: Meshed Poisson implicit function [Kazhdan et al.
2006] (41k triangles). Middle left: Feature-preserving mesh [Salman
et al. 2010] provided courtesy of the authors (18k triangles). Middle
left, small: Segmentation of the latter mesh [Cohen-Steiner et al. 2004].
Middle right: Mesh obtained by applying quadric-based simplification to
the segments [Garland and Heckbert 1997] (1k triangles). Bottom row:
Initial automatic reconstruction of our method (43 polygons, 289 triangles
used for rendering) and final refined model after additional 15 minutes of
optimization-aided modeling (174 polygons, 109 of them for the windows,
799 triangles used for rendering).

To account for (2), we choose a Gauss-Newton method (which
approximates the distance function) for the smooth optimization
and provide a good initialization of the problem (Section 4), which
is known to be necessary in the solution of nonlinear optimization
problems (see, e.g., Kelley [1999]).

To account for (3), we attach a Cartesian coordinate frame to each
polygon and linearize its motion (which is again an approximation).

Due to the underlying characteristics of the given optimization
problem, there is no guarantee that a global minimum can be found
in an acceptable time. However, the results shown in this section in-
dicate that we manage to find an aesthetically pleasing and accurate
solution in a few iterations.

7.3 Further Applications

7.3.1 Photo-Guided Modeling. During our tests with a wide
range of different datasets, we have made the observation that in
some cases parts of the model to reconstruct are not only sparsely
sampled, but are not depicted in the point cloud data at all. This
may be caused by occluders (e.g., lots of trees and bushes), highly

Fig. 16. Point cloud with artificial noise (top left) sampled from a synthetic
model (bottom left). Results from O-Snap (middle) and Pointools (right),
colored according to approximation error, with blue meaning zero Hausdorff
distance, and red high distance, respectively. Note that with O-Snap, the
overall building structure is recreated very accurately. Errors mainly appear
at sparsely sampled child elements (e.g., windows), especially at their side
faces, which currently do not consider the point cloud at all.

reflective materials (e.g., glassy or metallic facades, which lead to
problems for both laser scanners and photogrammetric approaches)
or the viewing angle from which the building has been captured.
Our modeling tools have still proven capable of reconstructing such
areas, if the user is provided with photos of the object; in case
of photogrammetric data, these can even be reprojected onto the
existing geometry. The example in Figure 12 shows a complex of
connected buildings that are highly occluded by trees, resulting
in a noisy and sparse point cloud in which details like the bal-
conies are not present. The image information reprojected on the
basic shapes helps the user to modify the boundaries accordingly,
and lets him or her accurately add any missing polygons as ex-
plained in Section 6.3. Please note that no reprojection of images
was applied during the modeling process of the objects displayed in
Figure 18.

7.3.2 Manufacturing. Precise reconstructions with low face
count are of interest to applications beyond architecture, in par-
ticular to manufacturing. Simple production patterns are valuable,
for example, for upfolding planar cut patterns from paper or sheet
metal. We shortly outline here how to implement the reverse op-
eration to upfolding in our pipeline to generate production data.
Unfolding a polyhedron to a planar, connected shape without any
self-intersections by only cutting along edges is a well surveyed
research area (refer to Demaine and O’Rourke [2007]). Interest-
ingly, it is still unknown if any convex polyhedron allows such an
edge unfolding, whereas it is known that there exist nonconvex
polyhedra where this is not possible. Basically, the solution space
for a given mesh is given by all spanning trees of the mesh’s face
dual. By relaxing the constraints and requesting not a single but a
small number of connected components, we determine a feasible
spanning tree by heuristically searching the solution space. An ex-
ample of a folded paper version of the town hall model is shown in
Figure 13.

7.3.3 Advanced Editing. Besides the modeling features intro-
duced in Section 6, our models offer (by using the underlying ad-
jacency graph) further editing possibilities to create different looks
of reconstructed shapes: The user selects a single face of a chimney
and applies an affine transformation to it. The connected compo-
nent of the adjacency graph (containing the chimney’s transformed
face) undergoes the same affine transformation and the optimiza-
tion is applied to reestablish a closed model (see Figure 14). While
our main task is still reconstruction from point clouds, our pipeline
leads to interesting ways for shape manipulation. Although hav-
ing different objectives, the idea of optimization coupled editing
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Fig. 17. All modeling sessions of our informal user study. Each of the 15 horizontal bars represents the timeline of a single session. Each user interaction
has been logged and time-stamped. Different colors represent different kinds of interaction. Session 1 shows mostly vertex actions (move, add, delete) as
results from the automatic pipeline are fine-tuned. Session 2 consists mostly of polygon sketching because no initial model is available. Session 3 is based on
a complicated church dataset. This takes more time, but all users are able to create a clean model. Participants: A has basic computer graphics skills. B and E
are researchers in real-time rendering. C is a skilled user of commercial modeling software. D has absolutely no computer science and graphics background.

has been extensively studied in the shape manipulation framework
introduced by Gal et al. [2009].

7.4 Evaluation

To evaluate our method, we compared the visual quality of
the models generated using our system and various other mesh
reconstruction and decimation algorithms, performed a test to
validate the accuracy of our results compared to using an existing
interactive tool, and conducted a user study with nonexpert users
to show the ease of use of our method.

7.4.1 Comparison with Meshing Methods. To evaluate the vi-
sual quality of our reconstructions, we applied our method and
various other meshing techniques to the laser scan of the Church of
Lans le Villard (Figure 15 top left). Figure 15 compares the different
approaches: MeshLab’s [2008] implementation of Poisson Surface
Reconstruction [Kazhdan et al. 2006] (top right), Salman et al.’s
[2010] feature-preserving mesh generation (middle left), the latter
method followed by Graphite’s [2010] implementation of geometry
segmentation [Cohen-Steiner et al. 2004] (middle left, small image),
and the same model with quadric-based mesh decimation [Garland
and Heckbert 1997] applied to each segment with fixed boundary,
for which we used MeshLab [2008] again (middle right). The third
row shows the results of our reconstruction and modeling pipeline.

7.4.2 Accuracy Comparison. We used our system and a com-
mercial point-based modeling tool, the Pointools [2011] plugin for
SketchUp, on a point cloud sampled from a synthetic house model.
Noise was added to sample positions in the amount of 0.5% of
the bounding box diagonal. Modeling was performed by a skilled
artist, who was instructed to create the most accurate model pos-
sible in the two tools, both of which he had used before. There
were no time constraints. After completion the artist reported to be
confident having created perfectly accurate models in both tools,
but also that he needed considerably more time and patience for
modeling in Pointools. In order to quantify this feedback, we com-
pared Hausdorff distances for each result to the original synthetic
model (measured using the Metro tool [Cignoni et al. 1996]), and
modeling times (see Table I). The results indicate that our method
outperforms the commercial tool in terms of accuracy and modeling
time. In addition to the Table I, see also Figure 16 for a visualization
of the approximation error.

Table I. Comparison of Modeling Times and
Approximation Errors (color coded in Figure 16)
Relative to the Model’s Bounding Box Diagonal
Tool Duration Min Mean Max

O-Snap 6.2 minutes 0 0.000588 0.007794
Pointools 35.7 minutes 0 0.001433 0.009382

7.4.3 User Study. In order to verify our tool’s general usabil-
ity for nonexpert users, we performed an informal user study. All
participants had never used the tool before and received the same
ten minutes hands-on introduction. Each user had to complete three
separate O-Snap sessions. Since not all candidates had a computer
graphics or modeling background, we only gave the general direc-
tive to create a good-looking model. We stopped each session as
soon as the user reached a closed model without major deficiencies.
A time-stamped log file of all user interactions was generated for
each session (see Figure 17).

Session Data Set
Initial Duration

Reconstruction Ø, (min-max)
1 Town Hall available 3.7 minutes (1-6)
2 Town Hall no 6.8 minutes (5-9)
3 Old Church available 13.1 minutes (6-20)

Session 1 is based on the simple town hall model shown in Fig-
ure 18 (top row). Here the initial reconstruction (RANSAC, Sec-
tions 4 and 5) is almost perfect, and users only have to add a missing
back wall and fine-tune some faces. An average user solves this task
in three minutes. Session 2 is equivalent to 1, but without the polyg-
onalization step (Section 4). Users have to manually sketch all the
polygons on the underlying segment planes (Section 4.1.1), and are
aided by interactive optimization (Section 5), which takes seven
minutes on average. We conclude that fine-tuning our automatic
pipeline results is about twice as efficient as sketching all the poly-
gons from scratch. On the other hand, the interactive optimization
allows a novice user to create a model from scratch in still accept-
able time. Finally, Session 3 challenges users with a complex church
model, shown in Figure 18 (second row). The initial model contains
misaligned faces and some parts are missing, but all users were able
to deal with the high geometric complexity and successfully create
a closed model in only 13 minutes on average.
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Fig. 18. Results from five point cloud data sets (generated from photos) shown from top to bottom: town hall, old church (Photos courtesy of Rainer
Brechtken), mountain house (Photos courtesy of Sinha et al. [2008]), castle-P19 (Photos courtesy of Strecha et al. [2008]) and playhouse (Photos courtesy
of Sinha et al. [2008]). Left to right: input point cloud, initial automatic reconstruction, refined model, final model with advanced details added, final
textured model (with the photos simply back-projected onto the model, more sophisticated methods for seamless texturing exist, e.g., Sinha et al.’s graph-cut
optimization [2008]).

General observations. Users who spend more than average
time consistently try to model ever smaller details or extrapolate
building parts not contained in the original data. All users are able to
quickly recover from erroneous modeling actions using undo or by
deleting incorrect shapes. No user was ever genuinely lost or stuck.
An unexpected but useful observation is that users who manage to
accidentally sketch a polygon inside a wrong plane consistently try
to flip this polygon over to the correct plane. Currently such an
operation is not supported, but it seems to be expected intuitively,
which is an inspiration for future work.

Our main conclusion is that nonexpert users are perfectly capable
of understanding and applying O-Snap’s modeling tools after only
ten minutes of basic introduction. Even participants without any
prior CG and modeling experience are able to create shapes of
buildings, aligned with the underlying point cloud data.

Comparison with Pointools. We compared the effectiveness
of our system to an existing commercial tool by instructing the
user study participant with the most experience in 3D modeling to
create models of town hall and old church using Pointools (please
see the accompanying video). A time limit of 30 minutes per scene
was stipulated. The candidate was already familiar with the tool.
While he succeeded in modeling the town hall in about 12 minutes
(as compared to 5 minutes using O-Snap, see Figure 17, C), he
had severe problems handling the more complex church model.
Choosing appropriate points in the point cloud to construct the

building’s outline as well as to draw faces on top of the extruded
outline consumed much of the available time. At the end of the 30
minutes time limit, he ended up with an incomplete model. Using
O-Snap he was able to successfully complete the same task in about
10 minutes.

We conclude that a Pointools-like approach is very well suited
for quickly creating simple axis-aligned models, but becomes te-
dious for more complex or incomplete (real-world) datasets. The
recommended approach of ground plane-based extrusion of build-
ing outlines results in additional effort and inaccuracies, since many
architectural elements cannot be captured by simple extrusion and
have to be fixed manually.

In contrast, O-Snap’s concept of sketching in 2D (on planes au-
tomatically fitted to the underlying point cloud) is more in line
with an artist’s workflow. It also strongly supports the comprehen-
sion of complex datasets by removing the effort required to extract
geometric meaning from raw point data.

8. CONCLUSION

We presented an interactive 3D modeling system that leverages
techniques from mathematical optimization to provide a novel way
of user-guided reconstruction and modeling of architectural scenes.
The system first proposes an initial automatic reconstruction
from an unstructured point cloud, by extracting candidate planes
and estimating coarse polygons on these planes. Local feasible
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adjacency relations between polygons are automatically computed
and enforced to align (snap) different parts of the model, while
maintaining a fit to the input data. Besides these local relations, the
system also favors orthogonality. In an interactive modeling phase,
the model can be refined using coarse strokes on 2D planes. After
each step, snapping reestablishes a watertight model where feasible.

8.1 Limitations and Future Work

Since many man-made objects, and especially buildings, consist of
planar surfaces, we solely used planes in our reconstruction and
modeling pipeline. In practice, this already allows handling a wide
range of architectural styles by approximating curved surfaces in
the scene by planes (see the cylindrical and conical parts of the
model approximated by a number of planes in Figure 15 bottom
right). However, our method is not limited to planes and can support
other shapes by extending our matching definition and defining
appropriate modeling spaces, which is an inspiration for future
work.

In order to keep our matching and pruning definition simple, we
allowed a few restrictions: (1) skew edges aren’t matched, and (2)
vertex-face matches aren’t pruned. The edge-edge matching defini-
tion and the extended matching graph can be revised to overcome
these restrictions, but we didn’t observe any cases in our datasets
where this would be necessary.

The robustness of the boundary extraction algorithm can suffer
from nonuniformly sampled segments. Even though we have not
observed this known limitation of alpha shapes in our datasets, one
could use conformal alpha shapes [Cazals et al. 2005], which em-
ploy a local scale parameter (instead of the global α) to reconstruct
nonuniformly sampled surfaces.

Currently, our system does not investigate repetitive structures
(e.g., balconies, windows on a facade), but these structures can
efficiently be modeled through our optimization-aided hierarchy
operation. However, we plan to extend our system to analyze regular
structures as proposed by Pauly et al. [2008].

Our novel modeling system differs significantly from other 3D
modeling techniques through its interactive coupling with the op-
timization routines. Currently, we are performing more extensive
user studies to learn more about expectations of O-Snap’s users.
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